Potential and Synergy Evaluation of Indigenous Biosurfactant-Producing Bacteria from Abandoned Oil Wells for Microbial Enhanced Oil Recovery (Meor) Technology Development

Penulis

  • Brian Saputra Manurung Universitas Pattimura
  • Windy Natalia Nusaly Universitas Pattimura
  • Abdul Mahid Ukratalo Universitas Pattimura
  • Monalisa Pertiwi Jeriska Taihuttu Universitas Pattimura
  • Fuadiska Salamena Universitas Pattimura

DOI:

https://doi.org/10.62112/biosilampari.v7i2.224

Kata Kunci:

Biosurfactants, Microbial Enhanced Oil Recovery, Petrophilic Bacteria, Potential Evaluation, Synergy Evaluation

Abstrak

Petroleum is a non-renewable natural resource that continues to be used in many applications. However, the availability of crude oil ready for use is decreasing due to the low productivity of oil wells, one of which is caused by its high viscosity. This needs to be resolved to meet the demand for crude oil. This study aims to determine the potential of eight petrophilic bacteria in producing biosurfactants and to determine their interaction to be applied to Microbial Enhanced Oil Recovery technology. The research design in this study was a Factorial Randomized Group Design with two types of treatments: 8 types of bacteria and 4 different temperatures. The experimental units were 32, with 2 replications of each, resulting in 64 experimental units.  The observation variables in this study were the diameter of the clear zone and the interaction of bacteria. Clear zone diameter was analyzed using Analysis of Variance, then continued with Duncan's New Multiple Range Test at 5%. This study showed the formation of clear zones as an indicator of the production of biosurfactants influenced by temperature. Brevundimonas   diminuta and P. peli have superior potential in forming clear zones in hemolytic assay than other bacteria, with clear zone diameters of 26.805 mm and 26.040 mm, respectively, at 44°C of incubation. Three bacteria have a high percentage of synergy in this study of 50%, which synergized with 4 other types of bacteria.

Referensi

Al-Wahaibi, Y., Al-Hadrami, H., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Joshi, S. (2016). Injection of biosurfactant and chemical surfactant following hot water injection to enhance heavy oil recovery. Petroleum Science, 13(1), 100–109. doi: 10.1007/s12182-015-0067-0.

Ali, N., Wang, F., Xu, B., Safdar, B., Ullah, A., Naveed, M., Wang, C., & Rashid, M. T. (2019). Production and application of biosurfactant produced by Bacillus licheniformis Ali5 in enhanced oil recovery and motor oil removal from contaminated sand. Molecules, 24(24). doi: 10.3390/molecules24244448.

Benson, H. J. (2001). Microbial Application: A Laboratory Manual in General Microbiology. 8th ed. New York: The McGraw-Hill.

Bouassida, M., Ghazala, I., Ellouze-Chaabouni, S., & Ghribi, D. (2018). Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. Journal of Microbiology and Biotechnology. 28(1), pp. 95–104. doi: 10.4014/jmb.1701.01033.

Budiharjo, H., Suhascaryo, N., Agung Nugroho, H., & Ariandy Saputra, B. (2017). Optimizing Oil Recovery through Microbial Injection to Support the Increasing Demand for Oil in Indonesia. Jurnal IATMI, pp. 1-9.

Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I., & Giuliett, A. M. (1996). Isolation and selection of biosurfactant-producing bacteria. World Journal of Microbiology & Biotechnology. 12, pp. 82-84.

Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. In Biotechnology Advances. 33(6), pp. 745–755. doi: 10.1016/j.biotechadv.2015.05.003.

Chen, X., Zhou, X., Geng, P., Zeng, Y., Hu, F., Sun, P., Zhuang, G., & Ma, A. (2023). Advancing biodegradation of petroleum contaminants by indigenous microbial consortia through assembly strategy innovations. Chemical Engineering Journal, 475. doi: 10.1016/j.cej.2023.146142.

Chen, W., Sun, J., Ji, R., Min, J., Wang, L., Zhang, J., Qiao, H., & Cheng, S. (2024). Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil. Journal of Marine Science and Engineering. 12(11), pp. 1-18. doi: 10.3390/jmse12112033.

Deng, Y. J., & Wang, S. Y. (2016). Synergistic growth in bacteria depends on substrate complexity. Journal of Microbiology. 54(1), pp. 23–30. doi: 10.1007/s12275-016-5461-9.

Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O. A., Mieszkin, S., Millet, L. J., Vajna, B., Junier, P., Bonfante, P., Krom, B. P., Olsson, S., van Elsas, J. D., & Wick, L. Y. (2018). Bacterial-fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiology Reviews. 42 (3), 335–352. doi: 10.1093/femsre/fuy008.

Extractive Industries Transparency Initiative Indonesia. (2021). Report of EITI Indonesia 2019- 2020. Ministry of Energy and Mineral Resources Republic of Indonesia, Jakarta. 192 pages.

Fardami, A. Y., Kawo, A. H., Yahaya, S., Lawal, I., Abubakar, A. S., & Maiyadi, K. A. (2022). A Review on Biosurfactant Properties, Production and Producing Microorganisms. Journal of Biochemistry, Microbiology and Biotechnology, 10(1), 5–12. doi: 10.54987/jobimb.v10i1.656.

Gudiña, E. J., Fernandes, E. C., Rodrigues, A. I., Teixeira, J. A., & Rodrigues, L. R. (2015). Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology. 6(2), pp. 1-7. doi: 10.3389/fmicb.2015.00059.

Hardestyariki, D., & Yudono, B. (2021). Synergism between Rhizosphere Bacteria Isolates from Scleria sp., Clidemia sp., and Panicum sp. to Increase the Effectiveness of Mixed Cultures in Hydrocarbon Biodegradation. Biovalentia: Biological Research Journal. 7(2), 61-65. doi: 10.24233/biov.7.2.2021.231.

Imam, A., Suman, S. K., Ghosh, D., & Kanaujia, P. K. (2019). Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. In TrAC - Trends in Analytical Chemistry. 118, pp. 50–64. doi: 10.1016/j.trac.2019.05.023.

Jemil, N., Ben Ayed, H., Hmidet, N., & Nasri, M. (2016). Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon. World Journal of Microbiology and Biotechnology. 32 (11), 1-13. doi: 10.1007/s11274-016-2132-2.

Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts. Journal of Chemistry. doi: 10.1155/2021/9823362.

Laini, R. E., Napoleon, A., Munawar, D. (2014). Isolasi Bakteri Termofilik Penghasil Biosurfaktan yang Berpotensi sebagai Agen MEOR (Microbial Enhanched Oil Recovery) dari Sumur Minyak di Sungai Angit. Jurnal Penelitian Sains. 17 (1), pp. 9-13.

Lázaro-Mass, S., Gómez-Cornelio, S., Castillo-Vidal, M., Alvarez-Villagomez, C. S., Quintana, P., De la Rosa-García, S. (2023). Biodegradation of hydrocarbons from contaminated soils by microbial consortia: A laboratory microcosm study. Electronic Journal of Biotechnology. 61, pp. 24-32. doi: 10.1016/j.ejbt.2022.10.002.

Marajan, C., Alias, S., Ramasamy, K., & Abdul-Talib, S. (2018). The effect of incubation time, temperature, and pH variations on the surface tension of biosurfactant produced by Bacillus spp. AIP Conference Proceedings, 2020 (1), pp. 1-7. doi: 10.1063/1.5062673.

Muangchinda, C., Rungsihiranrut, A., Prombutara, P., Soonglerdsongpha, S., & Pinyakong, O. (2018). 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. Journal of Hazardous Materials, 357, 119–127. doi: 10.1016/j.jhazmat.2018.05.062.

Norouzi, N., & Fani, M. (2021). Globalization and the oil market: An overview on considering petroleum as a trade commodity. Research Article Journal of Energy Management and Technology (JEMT), 6, 54. doi: 10.22109/jemt.2021.276311.1285.

Omrani, R., Spini, G., Puglisi, E., & Saidane, D. (2018). Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation. 29 (2), 187–209. doi: 10.1007/s10532.

Otzen, D.E. (2017). Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim. Biophys. Acta 1859, 639–649. doi: 10.1016/j.bbamem.2016.09.024.

Parthipan, P., Preetham, E., Machuca, L. L., Rahman, P. K. S. M., Murugan, K., & Rajasekar, A. (2017). Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Frontiers in Microbiology. 8(2), pp. 1-14. doi: 10.3389/fmicb.2017.00193.

Paryoto, S., Sitompul, V., Tirta Winata, D., Diharja, T., Alfian, M., Ondihon Sitompul, F., & Sutadiwiria, G. (2021). Challenges of MEOR Implementation in Indonesia. Jurnal IATMI,vol no pp. 1-8.

Patel, J., Borgohain, S., Kumar, M., Rangarajan, V., Somasundaran, P., & Sen, R. (2015). Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews. 52, pp. 1539–1558. Elsevier Ltd. doi: 10.1016/j.rser.2015.07.135.

Poshala, K. K. (2020). Effects of Temperature on the Biosurfactant Production from Bacillus subtilis. IJESC. 10(9), pp. 27250-27253.

Prescott, L. M., Harley, J. P., & Klein, D. A. (1999). Microbiology. 4th ed. New York: The McGraw-Hill.

Rahmati, F., Lajayer, B. A., Shadfar, N., van Bodegom, P. M., & van Hullebusch, E. D. (2022). A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms. 10 (7), pp. 1-21. doi: 10.3390/microorganisms10071289.

Rajesh, M., Samundeeswari, M., & Archana, B. (2017). Isolation of Biosurfactant Producing Bacteria from Garbage Soil. Journal of Applied & Environmental Microbiology. 5(2), pp. 74–78. doi: 10.12691/jaem-5-2-3.

Safdel, M., Anbaz, M. A., Daryasafar, A., & Jamialahmadi, M. (2017). Microbial enhanced oil recovery, a critical review of worldwide implemented field trials in different countries. Renewable and Sustainable Energy Reviews. 74, 159–172. doi: 10.1016/j.rser.2017.02.045.

Sakshi, Singh, S. K., & Haritash, A. K. (2021). Catabolic enzyme activities during biodegradation of three-ring PAHs by novel DTU-1Y and DTU-7P strains isolated from petroleum-contaminated soil. Archives of Microbiology, 203(6), 3101–3110. doi: 10.1007/s00203-021-02297-4.

Wartell, B., Boufadel, M., & Rodriguez-Freire, L. (2021). An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. International Biodeterioration and Biodegradation. 157, 1-24. doi: 10.1016/j.ibiod.2020.105156.

Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., & Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration and Biodegradation, 107, 158–164. doi: 10.1016/j.ibiod.2015.11.019.

Wu, B., Xiu, J., Yu, L., Huang, L., Yi, L., & Ma, Y. (2022). Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Scientific Reports, 12(1). doi: 10.1038/s41598-022-12025-7.

Xia, M., Fu, D., Chakraborty, R., Singh, R. P., & Terry, N. (2019). Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresource Technology. 282, pp. 456–463. doi: 10.1016/j.biortech.2019.01.131.

Yarmola, T., Topilnytskyy, P., & Romanchuk, V. (2023). High-Viscosity Crude Oil. A Review. Chemistry and Chemical Technology. 17 (1), 195–202. doi: 10.23939/chcht17.01.195.

Zobaer, M., Ali, F., Anwar, N., Sajjad, M., Bappi, H., Binte Bakar, T., Hossain, T. J., Sajib Khan, M., & Zawad, A. N. M. S. (2024). Isolation of Biosurfactant-Producing Bacteria from Oil-Spilled Soil and Characterization of Their Secreted Biosurfactants in Pathogen-Inhibition and Oil-Emulsification. International Journal of Pharmaceutical Sciences, 15(4), pp. 1174–1183. doi: 10.13040/IJPSR.0975-8232.

Unduhan

Diterbitkan

2025-06-04

Cara Mengutip

Manurung, B. S., Nusaly, W. N., Ukratalo, A. M., Taihuttu, M. P. J., & Salamena, F. (2025). Potential and Synergy Evaluation of Indigenous Biosurfactant-Producing Bacteria from Abandoned Oil Wells for Microbial Enhanced Oil Recovery (Meor) Technology Development. Jurnal Biosilampari : Jurnal Biologi, 7(2), 142–154. https://doi.org/10.62112/biosilampari.v7i2.224