Potential of Liquid Smoke in Inhibiting the Growth of Pathogenic Bacteria: A Mini Review
DOI:
https://doi.org/10.62112/biosilampari.v7i2.162Kata Kunci:
Antibacterial, Chemical Compounds, Raw Materials, Pyrolysis, Wood VinegarAbstrak
The objective of this study was to perform a comprehensive evaluation of the application of liquid smoke as a possible antibacterial agent. The studies were identified by conducting searches on multiple electronic databases, specifically Semantic Scholar, PubMed, and Google Scholar, from 2013 to 2024. The keywords used included ‘antibacterial of wood vinegar, antibacterial of pyroligneous extract, antibacterial of pyroligneous acid, antibacterial of wood distillate, antibacterial activity of liquid smoke, and aktivitas antibakteri asap cair (in Bahasa Indonesia)’. The results indicate that liquid smoke has the capacity to serve as a natural antibacterial agent against both Gram positive and Gram-negative microorganisms. The variation in antibacterial susceptibility may arise from the composition of chemical compounds present in liquid smoke, the raw materials employed in its production, the temperature of pyrolysis, and the specific testing methodology employed. This review will be useful to the industrial and scientific communities in the food science, pharmaceutical, and technology fields.
Referensi
Adfa, M., Kusnanda, A. J., Saputra, W. D., Banon, C., Efdi, M., & Koketsu, M. (2017). Termiticidal Activity of Toona sinensis Wood Vinegar against Coptotermes curvignathus holmgren. Rasayan Journal of Chemistry, 10(1), 153–159. https://doi.org/10.7324/RJC.2017.1041866
Agustina, W., Sumpono, S., & Elvia, R. (2017). Aktivitas Asap Cair Cangkang Buah Hevea braziliensis Sebagai Anti bakteri Staphylacoccus aureus. Alotrop, 1(1), 6–9. https://doi.org/10.33369/atp.v1i1.2705
Ariffin, S.J., Yahayu, M., El-Enshasy, H., Malek, R.A., Aziz, A.A., Hashim, N.M., & Zakaria, Z.A. (2017). Optimization of Pyroligneous Acid Production From Palm Kernel Shell and Its Potential Antibacterial and Antibiofilm Activities. Indian Journal of Experimental Biology, 55(7), 427–435.
Arundina, I. R.A., Diyatri, I., Surboyo, M.D.C., Halimah, A.N., & Chusnurrafi, F.I. (2020). The Antibacterial Effect of Liquid Smoke Rice Hull on Porphyromonas gingivalis and Its Proliferative Effects on Osteoblast as Periodontitis Remedies: An Invitro Study. International Journal of Pharmaceutical Research, 12(03), 3466–3471. https://doi.org/10.31838/ijpr/2020.12.03.490
Ayudiarti, D.L., & sari, R.N. (2010). Asap Cair dan Aplikasinya pada Produk Perikanan. Squalen, 5(3), 101–108.
Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for In Vitro Evaluating Antimicrobial Activity: A Review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Brustolin, A.P., Soares, J.M., Muraro, K., Schwert, R., Steffens, C., Cansian, R.L., & Valduga, E. (2024). Investigating Antimicrobial and Antioxidant Activity of Liquid Smoke and Physical‐Chemical Stability of Bacon Subjected to Liquid Smoke and Conventional Smoking. Journal of Food Science, 89(11), 7217–7227. https://doi.org/10.1111/1750-3841.17379
Budaraga, I.K., Arnim, Marlinda, Y., & Bulanin, U. (2016). Antibacterial Properties of Liquid Smoke from the Production of Cinnamonhow Purification and Concentration of Different. International Journal of Thesis Projects and Dissertations (IJTPD), 4(2), 265–274.
Budaraga, I.K., Arnim,, Marlinda, Y., & Bulain, U. (2016b). Liquid Smoke Production Quality from Raw Materials Variation and Different Pyrolysis Temperature. International Journal on Advanced Science, Engineering and Information Technology, 6(3), 306-315. doi:10.18517/ijaseit.6.3.737
Budaraga, I.K., & Putra, D.P. (2019). Liquid Smoke Antimicrobial Test of Cocoa Fruit Peel Against Eschericia coli and Staphylococcus aureus Bacteria. IOP Conference Series: Earth and Environmental Science, 365(1), 1–10 https://doi.org/10.1088/1755-1315/365/1/012049
Chan, W.T., Balsa, D., & Espinosa, M. (2015). One Cannot Rule them All: Are Bacterial Toxins-Antitoxins Druggable? FEMS Microbiology Reviews, 39(4), 522–540. https://doi.org/10.1093/femsre/fuv002
Chukeatirote, E., & Jenjai, N. (2018). Antimicrobial Activity of Wood Vinegar from Dimocarpus longan. Environment Asia, 11(3), 161–169. https://doi.org/10.14456/ea.2018.45
De Souza Araújo, E., Pimenta, A.S., Feijó, F.M.C., Castro, R.V.O., Fasciotti, M., Monteiro, T.V.C., & de Lima, K.M.G. (2018). Antibacterial and Antifungal Activities of Pyroligneous Acid from Wood of Eucalyptus urograndis and Mimosa tenuiflora. Journal of Applied Microbiology, 124(1), 85–96. https://doi.org/10.1111/jam.13626
Desvita, H., Faisal, M., Mahidin, M., & Suhendrayatna, S. (2021). Preliminary Study on The Antibacterial Activity of Liquid Smoke from Cacao Pod Shells (Theobroma cacao L). IOP Conference Series: Materials Science and Engineering, 1098(2), 022004. https://doi.org/10.1088/1757-899x/1098/2/022004
Diatmika, I.G.N.A.Y.A., Kencana, P.K.D., & Arda, G.. (2019). Karakteristik Asap Cair Batang Bambu Tabah (Gigantochloa nigrociliata BUSE-KURZ) yang Dipirolisis pada Suhu Berbeda. Jurnal BETA (Biosistem Dan Teknik Pertanian), 7(2), 271–278.
Gama, G.S.P., Pimenta, A.S., Feijó, F.M.C., dos Santos, C.S., Castro, R.V.O., de Azevedo, T.K.B, & de Medeiros, L.C.D (2022). Effect of pH on The Antimicrobial Activity of Wood Vinegar (Pyroligneous Extract) from Eucalyptus. Revista Arvore, 47, e4711. https://doi.org/10.1590/1806-908820230000011
Gama, G.S.P., Pimenta, A.S., Feijó, F.M.C., Santos, C.S., Fernandes, B.C.C., de Oliveira, M.F., de Souza, E.C., Monteiro, T.V.C, Fasciotti, M., de Azevedo, T.K.B., de Melo, R.R., & Júnior, A.F.D. (2023). Antimicrobial Activity and Chemical Profile of Wood Vinegar from Eucalyptus (Eucalyptus urophylla x Eucalyptus grandis - clone I144) and bamboo (Bambusa vulgaris). World Journal of Microbiology and Biotechnology, 39(186), 1–21. https://doi.org/10.1007/s11274-023-03628-x
Hou, X., Qiu, L., Luo, S., Kang, K., Zhu, M., & Yao, Y. (2018). Chemical Constituents and Antimicrobial Activity of Wood Vinegars at Different Pyrolysis Temperature Ranges Obtained from Eucommia ulmoides Olivers Branches. RSC Advances, 8(71), 40941–40949. https://doi.org/10.1039/C8RA07491G
Kailaku, S.I., Syakir, M., Mulyawanti, I., & Syah, A.N.A. (2017). Antimicrobial Activity of Coconut Shell Liquid Smoke. IOP Conference Series: Materials Science and Engineering, 206, 1–6. https://doi.org/10.1088/1757-899X/206/1/012050
Kawamoto, H. (2017). Lignin Pyrolysis Reactions. Journal of Wood Science, 63(2), 117–132. https://doi.org/10.1007/s10086-016-1606-z
Kłodzińska, S.N., Priemel, P.A., Rades, T. &Nielsen, H.M. (2018). Combining Diagnostic Methods for Antimicrobial Susceptibility Testing – A Comparative Approach. Journal of Microbiological Methods, 144, 177-185. https://doi.org/10.1016/j.mimet.2017.11.010
Lin, Y.C., Cho, J., Tompsett, G.A., Westmoreland, P.R., & Huber, G.W. (2009). Kinetics and Mechanism of Cellulose Pyrolysis. Journal of Physical Chemistry C, 113(46), 20097–20107. https://doi.org/10.1021/jp906702p
Mansur, D., Sugiwati, S., Rizal, W.A., Suryani, R., & Maryana, R. (2021). Pyrolysis of cajuput (Melaleuca leucadendron) Twigs and Rice (Oryza sativa) Husks to Produce Liquid Smoke-Containing Fine Chemicals for Antibacterial Agent Application. Biomass Conversion and Biorefinery, 13(12), 10561–10574. https://doi.org/10.1007/s13399-021-01896-x
Misuri, F., & Marri, L. (2021). Antibacterial Activity of Wood Distillate from Residual Virgin Chestnut Biomass. European Journal of Wood and Wood Products, 79(1), 237–239. https://doi.org/10.1007/s00107-020-01611-z
Muriady, Meilina, H., & Faisal, M. (2022). Antibacterial Activity of Liquid Smoke Powder From Rice Husk. International Journal of GEOMATE, 23(95), 89–96. https://doi.org/10.21660/2022.95.7522
Nurliana, L., & Musta, R. (2019). Studi Kinetika Antibakteri dari Hasil Pirolisis Cangkang Biji Jambu Mete terhadap Staphylococcus aureus. Indonesian Journal of Chemical Research, 6(2), 74–80. https://doi.org/10.30598//ijcr.2019.6-nur
Oktarina, D., Sumpono, S., & Elvia, R. (2017). Uji Efektivitas Asap Cair Cangkang Buah Hevea braziliensis Terhadap Aktivitas Bakteri Escherichia coli. Alotrop, 1(1), 1–5. https://doi.org/10.33369/atp.v1i1.2704
Pasaribu, T., Sinurat, A.P., Wina, E., & Cahyaningsih, T. (2022). Antibacterial Activity of Liquid Smoke from Anacardium occidentale And Cocos nucifera Shell. AIP Conference Proceedings, 2391(October), 1–5. https://doi.org/10.1063/5.0072461
Rahmat, B., Pangesti, D., Natawijaya, D., & Sufyadi, D. (2014). Generation of Wood-waste vinegar and Its Effectiveness as a Plant Growth Regulator and Pest Insect Repellent. Bio Resources, 9(4), 6350–6360. https://doi.org/10.15376/biores.9.4.6350-6360
Riekkinen, K., Raninen, K., Keränen, E., Selenius, M., Vilppo, T., Raatikainen, O., & Korhonen, J. (2022). Antimicrobial Activity of Slow Pyrolysis Distillates from Pine Wood Biomass Against Three Pathogens. Forests, 13(4), 1–11. https://doi.org/10.3390/f13040559
Sadiah, H.H., Cahyadi, A.I., & Windria, S. (2022). Kajian Daun Sirih Hijau (Piper betle L.) Sebagai Antibakteri. Jurnal Sain Veteriner, 40(2), 128-138.
Salamah, S., & Jamilatun, S. (2017). Pemanfaatan Asap Cair Food Grade yang Dimurnikan dengan Arang Aktif sebagai Pengawet Ikan Nila. Eksergi, 14(2), 29–34.
Siregar, D.I.N., Satwika, D., & Prakasita, V.C. (2022). Pengaruh Asap Cair Bambu Tali (Gigantochloa apus) terhadap Pertumbuhan Staphylococcus aureus dan Staphylococcus epidermidis. Jurnal Kedokteran Meditek, 28(2), 177–185. https://doi.org/10.36452/jkdoktmeditek.v28i2.2419
Suresh, G., Pakdel, H., Rouissi, T., Brar, S.K., Fliss, I., & Roy, C. (2019). In Vitro Evaluation of Antimicrobial Efficacy of Pyroligneous Acid from Softwood Mixture. Biotechnology Research and Innovation, 3(1), 47–53. https://doi.org/10.1016/j.biori.2019.02.004
Suryani, R., Rizal, W.A., Prasetyo, D.J., Apriyana, W., Anwar, M., & Wahono, S.K. (2023). Physicochemical Characteristics, Antioxidant and Antibacterial Activities of Liquid Smoke Derived from Mixed Sawdust and Cocoa Pod Husks Biomass. Trends in Sciences, 20(6), 4985. https://doi.org/10.48048/tis.2023.4985
Suryani, R., Rizal, W.A., Pratiwi, D., & Prasetyo, D.J. (2020). Karakteristik dan Aktivitas Antibakteri Asap Cair Dari Biomassa Kayu Putih (Melaleuca leucadendra) Dan Kayu Jati (Tectona grandis). Jurnal Teknologi Pertanian, 21(2), 106–117. https://doi.org/10.21776/ub.jtp.2020.021.02.4
Tobing, R. D. D. M.L., Defiani, M. R., & Parwanayoni, N. M.S. (2021). Uji Daya Hambat Asap Cair Tempurung Kelapa (Cocos nucifera L.) Terhadap Pertumbuhan Escherichia coli Secara In Vitro. Simbiosis, IX(2), 81-93. https://doi.org/10.24843/jsimbiosis.2021.v09.i02.p03
Shurong, W., Gongxin, D., Haiping, Y., & Zhongyang, L. (2017). Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-The-Art Review. Progress In Energy and Combustion Science, 62, 33-86. https://doi.org/10.1016/j.pecs.2017.05.004
Wibowo, S., Syafii, W., Pari, G., & Herliyana, E.N. (2023). Utilization of Lignocellulosic Waste as a Sources of Liquid Smoke: A Literature. Journal of Environmental Health, 15(3), 196-216. https://doi.org/10.20473/jkl.v15i3.2023.196-216
Yang, J.F., Yang, C.H., Liang, M.T., Gao, Z.J., Wu, Y.W., & Chuang, L.Y. (2016). Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules, 21(9), 1–10. https://doi.org/10.3390/molecules21091150
Yulstiani, R. (2018). Monograf Asap Cair Sebagai Bahan Pengawet Alami Pada Produk Daging dan Ikan. Surabaya: UPN Veteran Jawa Timur.