Peran Crispr-Cas9 dalam Rekayasa Genetik Tomat (Solanum Lycopersicum) sebagai Upaya Peningkatan Ketahanan Pangan pada Bioteknologi Pertanian
DOI:
https://doi.org/10.62112/biosilampari.v8i1.501Kata Kunci:
CRISPR-Cas9, Genetic Engineering, Tomato, Food Security, Agricultural BiotechnologyAbstrak
This study aims to review various scientific publications related to the application of CRISPR-Cas9 in tomato genetic engineering to enhance food security. The research method used is a literature from reputable databases such as Scopus, ScienceDirect, and PubMed. The results show that CRISPR-Cas9 offers several advantages, including high specificity, multiplexing capability, and flexibility in genome editing. Its applications in tomatoes involve improving resistance to biotic stress (pathogens and diseases) and abiotic stress (drought, extreme temperatures), enhancing nutritional quality, extending fruit shelf life, and increasing productivity. These improvements are directly linked to food security by ensuring stable production, reducing postharvest losses, and increasing crop resilience to climate change. Therefore, CRISPR-Cas9 technology provides an innovative strategy for sustainable agricultural biotechnology development and global food security enhancement.
Referensi
Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., & Mahfouz, M. M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biology, 16(1), 1–11. https://doi.org/10.1186/s13059-015-0799-6
Anand, S., Visakh, R. L., Shrithar Bhalaji, B. K., Parvathy, Reddy, N. R. S., & Rajasekharan, A. (2025). Current Trends in CRISPR-Cas System Based Genome Editing in Tomato (Solanum lycopersicum). Plant Breeding, 1–23. https://doi.org/10.1111/pbr.70023
Armario Najera, V., Twyman, R. M., Christou, P., & Zhu, C. (2019). Applications of multiplex genome editing in higher plants. Current Opinion in Biotechnology, 59, 93–102. https://doi.org/10.1016/j.copbio.2019.02.015
Berman, A., Su, N., Li, Z., Landau, U., Chakraborty, J., Gerbi, N., Liu, J., Qin, Y., Yuan, B., Wei, W., Yanai, O., Mayrose, I., Zhang, Y., & Shani, E. (2025). Construction of multi-targeted CRISPR libraries in tomato to overcome functional redundancy at genome-scale level. Nature Communications , 16(1), 1–14. https://doi.org/10.1038/s41467-025-59280-6
Bhoomika, S., Salunkhe, S. R., Sakthi, A. R., Saraswathi, T., Manonmani, S., Raveendran, M., & Sudha, M. (2024). CRISPR-Cas9: Unraveling Genetic Secrets to Enhance Floral and Fruit Traits in Tomato. Molecular Biotechnology. https://doi.org/10.1007/s12033-024-01290-8
Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. Plant Physiology, 166(3), 1292–1297. https://doi.org/10.1104/pp.114.247577
Brooks, C., Nekrasov, V., Lipppman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166(3), 1292–1297. https://doi.org/10.1104/pp.114.247577
Chandrasekaran J et al (2016) Development of broad virus resis- tance in non-transgenic cucumber using CRISPR/Cas9 tech- nology. Mol Plant Pathol 17:1140–1153. https://doi. org/10.1111/mpp.12375
Chaudhuri, A., Halder, K., & Datta, A. (2022). Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics, 135(2), 367–387. https://doi.org/10.1007/s00122-021-03984-y
Ezin, V., & Symonds, R. (2023). Genome Editing of Tomato Crop with CRISPR/Cas Systems: Past, Present, and Future (pp. 191–238). https://doi.org/10.1201/9781003331759-10
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229–1232. https://doi.org/10.1038/cr.2013.114
Fu, Y., Jennifer A. Foden, Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. International Review on Modelling and Simulations, 4(2), 851–857. https://doi.org/10.1038/nbt.2623.High
Hardinah, N. A., Miranda, S., & Melisa, A. O. (2025). Tinjauan Literatur: Penerapan Model Pembelajaran Berbasis Proyek untuk Meningkatkan Kemampuan Berpikir Kreatif Siswa pada Pembelajaran Biologi SMA. Spizaetus: Jurnal Biologi Dan Pendidikan Biologi, 6(1), 167–179. https://doi.org/10.55241/spibio.v6i1.533
Hayut, S. F., Bessudo, C. M., & Levy, A. A. (2017). Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communications, 8(May), 1–9. https://doi.org/10.1038/ncomms15605
Hieu, P. V, & Toan, T. B. (2023). Agricultural Development Based On CRISPR-CAS9 And Retrons Techniques: A Perspective Application On Tomato. SABRAO, 55(1), 237–253.
Hilton, I. B., Vockley, C. M., Pratiksha, I., Crawford, G. E., Reddy, T. E., Gersbach, C. A., Carolina, N., States, U., Biology, C., Carolina, N., Carolina, N., Carolina, N., & Carolina, N. (2015). Activates Genes From Promoters and Enhancers. Nature Biotechnology, 33(5), 510–517. https://doi.org/10.1038/nbt.3199.Epigenome
Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., & Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827–832. https://doi.org/10.1038/nbt.2647
Ito, Y., Sekiyama, Y., Nakayama, H., Nishizawa-Yokoi, A., Endo, M., Shima, Y., Nakamura, N., Kotake-Nara, E., Kawasaki, S., Hirose, S., & Toki, S. (2020). Allelic Mutations in the Ripening -Inhibitor Locus Generate Extensive Variation in Tomato Ripening . Plant Physiology, 183(1), 80–95. https://doi.org/10.1104/pp.20.00020
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), 1–12. https://doi.org/10.1093/nar/gkt780
Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., Usadel, B., Salts, Y., & Barg, R. (2017). Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal, 15(5), 634–647. https://doi.org/10.1111/pbi.12662
Komor, A. C., Zhao, K. T., Packer, M. S., Gaudelli, N. M., Waterbury, A. L., Koblan, L. W., Kim, Y. B., Badran, A. H., & Liu, D. R. (2017). Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 3(8), 1–9. https://doi.org/10.1126/sciadv.aao4774
Kondo, K., & Taguchi, C. (2022). Japanese Regulatory Framework and Approach for Genome-edited Foods Based on Latest Scientific Findings. Food Safety, 10(4), 113–128. https://doi.org/10.14252/foodsafetyfscj.d-21-00016
Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., Zhao, Y., & Liu, M. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 31(8), 681–683. https://doi.org/10.1038/nbt.2661
Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science, 9(April), 1–12. https://doi.org/10.3389/fpls.2018.00559
Maccaro, A., Piaggio, D., Pagliara, S., & Pecchia, L. (2021). The role of ethics in science: a systematic literature review from the first wave of COVID-19. Health and Technology, 11(5), 1063–1071. https://doi.org/10.1007/s12553-021-00570-6
Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T., Voytas, D. F., Choi, I. R., & Chadha-Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11), 1918–1927. https://doi.org/10.1111/pbi.12927
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826. https://doi.org/10.1126/science.1232033
Mishra, R., & Zhao, K. (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports, 12(2), 57–68. https://doi.org/10.1007/s11816-018-0472-0
Munir, A., Amin, I., Zahoor, M. K., Majeed, H. N., Almoammar, H., Ghaffar, A., & Ahmad, A. (2024). Chapter 8 - Multiplex genome editing in plants through CRISPR-Cas. In K. A Abd-Elsalam, A. Ahmad, & B. B. T.-Crispr. H. C. Zhang (Eds.), Genome Modified Plants and Microbes in Food and Agriculture (pp. 127–142). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-13229-2.00012-0
Murugavelu, G. S., Harish Chandar, S. R., Sakthivel, S. K., Ramaswamy, M., Swaminathan, A., & Chinnaswamy, A. (2025). Progress and Updates of CRISPR/Cas9-Mediated Genome Editing on Abiotic Stress Tolerance in Agriculture: A Review. Sugar Tech, 27(1), 29–43. https://doi.org/10.1007/s12355-024-01448-3
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(8), 691–693. https://doi.org/10.1038/nbt.2655
Nguyen, N. H., Bui, T. P., Le, N. T., Nguyen, C. X., Le, M. T. T., Dao, N. T., Phan, Q., Van Le, T., To, H. M. T., Pham, N. B., Chu, H. H., & Do, P. T. (2023). Disrupting Sc-uORFs of a transcription factor bZIP1 using CRISPR/Cas9 enhances sugar and amino acid contents in tomato (Solanum lycopersicum). Planta, 257(3), 57. https://doi.org/10.1007/s00425-023-04089-0
Ortigosa, A., Gimenez-Ibanez, S., Leonhardt, N., & Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal, 17(3), 665–673. https://doi.org/10.1111/pbi.13006
Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., Chen, L., & Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6(April), 1–10. https://doi.org/10.1038/srep24765
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Physiology & Behavior, 176(5), 139–148. https://doi.org/10.1038/nbt.2673.High-throughput
Prihatna, C., Barbetti, M. J., & Barker, S. J. (2018). A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in microbiology, 9, 1226. https://doi.org/10.3389/fmicb.2018.01226
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scoot, D. A., & Zhang, F. (2015). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 1–10. https://doi.org/10.1038/nprot.2013.143.Genome
Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR- Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128. https://doi.org/10.1016/j.biochi.2015. 03.025
Ricroch, A. (2019). Global developments of genome editing in agriculture. Transgenic Research, 28(2), 45–52. https://doi.org/10.1007/s11248-019-00133-6
Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., & Lippman, Z. B. (2017). Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell, 171(2), 470-480.e8. https://doi.org/10.1016/j.cell.2017.08.030
Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., Garcha, J., Winte, S., Masson, H., Inagaki, S., Federici, F., Sinh, N., Deal, R. B., Bailey-Serres, J., & Brady, S. M. (2015). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology, 166(2), 455–469. https://doi.org/10.1104/pp.114.239392
Santillán Martínez, M. I., Bracuto, V., Koseoglou, E., Appiano, M., Jacobsen, E., Visser, R. G. F., Wolters, A. M. A., & Bai, Y. (2020). CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology, 20(1), 1–13. https://doi.org/10.1186/s12870-020-02497-y
Schaart, J. G., van de Wiel, C. C. M., & Smulders, M. J. M. (2021). Genome editing of polyploid crops: prospects, achievements and bottlenecks. Transgenic Research, 30(4), 337–351. https://doi.org/10.1007/s11248-021-00251-0
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J.-L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686–688. https://doi.org/10.1038/nbt.2650
Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C., & Wang, K. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences, 60(5), 506–515. https://doi.org/10.1007/s11427-017-9008-8
Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., Ezura, H., Nishida, K., Ariizumi, T., & Kondo, A. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 35(5), 441–443. https://doi.org/10.1038/nbt.3833
Shlush, I. Ben, Samach, A., Melamed-Bessudo, C., Ben-Tov, D., Dahan-Meir, T., Filler-Hayut, S., & Levy, A. A. (2021). Crispr/cas9 induced somatic recombination at the crtiso locus in tomato. Forests, 12(1), 1–12. https://doi.org/10.3390/genes12010059
Shu, P., Li, Z., Min, D., Zhang, X., Ai, W., Li, J., Zhou, J., Li, Z., Li, F., & Li, X. (2020). CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry, 68(20), 5529–5538. https://doi.org/10.1021/acs.jafc.9b08069
Tian, Y., Liu, X., Fan, C., Li, T., Qin, H., Li, X., Chen, K., Zheng, Y., Chen, F., & Xu, Y. (2021). Enhancement of Tobacco (Nicotiana tabacum L.) Seed Lipid Content for Biodiesel Production by CRISPR-Cas9-Mediated Knockout of NtAn1. Frontiers in Plant Science, 11(January), 1–13. https://doi.org/10.3389/fpls.2020.599474
Tiwari, J. K., Singh, A. K., & Behera, T. K. (2023). CRISPR / Cas genome editing in tomato improvement : Advances and applications. Frontiers, 10(3389), 1–14. https://doi.org/10.3389/fpls.2023.1121209
Tomlinson, L., Yang, Y., Emenecker, R., Smoker, M., Taylor, J., Perkins, S., Smith, J., MacLean, D., Olszewski, N. E., & Jones, J. D. G. (2019). Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnology Journal, 17(1), 132–140. https://doi.org/10.1111/pbi.12952
Tran, M. T., Doan, D. T. H., Kim, J., Song, Y. J., Sung, Y. W., Das, S., Kim, E., Son, G. H., Kim, S. H., Van Vu, T., & Kim, J.-Y. (2021). CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Plant Cell Reports, 40(6), 999–1011. https://doi.org/10.1007/s00299-020-02622-z
Tripathi, L., & Tripathi, V. O. N. dan J. N. (2024). Penerapan penyuntingan gen berbasis CRISPR / Cas untuk pengembangan pisang yang lebih baik. Bioengineering and Biotechnology, 12, 1–13. https://doi.org/10.3389/fbioe.2024.1395772
Ueta, R., Abe, C., Watanabe, T., Sugano, S. S., Ishihara, R., Ezura, H., Osakabe, Y., & Osakabe, K. (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-00501-4
Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85, 227–264. https://doi.org/10.1146/annurev-biochem-060815-014607
Wang, J. W., Wang, A., Li, K., Wang, B., Jin, S., Reiser, M., & Lockey, R. F. (2015). CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. BioTechniques, 58(4), 161–170. https://doi.org/10.2144/000114261
Wang, T., Deng, Z., Zhang, X., Wang, H., Wang, Y., Liu, X., Liu, S., Xu, F., Li, T., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Horticulture Research, 5(1). https://doi.org/10.1038/s41438-018-0073-7
Xie, K., Minkenberg, B., & Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3570–3575. https://doi.org/10.1073/pnas.1420294112
Xie, K., & Yang, Y. (2013). RNA-Guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6), 1975–1983. https://doi.org/10.1093/mp/sst119
Xu, C., Park, S. J., Van Eck, J., & Lippman, Z. B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes and Development, 30(18), 2048–2061. https://doi.org/10.1101/gad.288415.116
Yang, Y., Zhu, G., Li, R., Yan, S., Fu, D., Zhu, B., Tian, H., Luo, Y., & Zhu, H. (2017). The RNA editing factor SLORRM4 is required for normal fruit ripening in tomato1. Plant Physiology, 175(4), 1690–1702. https://doi.org/10.1104/pp.17.01265
Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X., & Yu, J. (2018). BZR1 Transcription Factor Regulates Heat Stress Tolerance Through FERONIA Receptor-Like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato. Plant & Cell Physiology, 59(11), 2239–2254. https://doi.org/10.1093/pcp/pcy146
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., & Zhu, J.-K. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6), 797–807. https://doi.org/10.1111/pbi.12200
Zhang, S., Wang, L., Zhao, R., Yu, W., Li, R., Li, Y., Sheng, J., & Shen, L. (2018). Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. Journal of Agricultural and Food Chemistry, 66(34), 8949–8956. https://doi.org/10.1021/acs.jafc.8b02191
Zhou, L., Sun, Z., Hu, T., Chen, D., Chen, X., Zhang, Q., Cao, J., Zhu, B., Fu, D., Zhu, H., & Qu, G. (2024). Increasing flavonoid contents of tomato fruits through disruption of the SlSPL-CNR, a suppressor of SlMYB12 transcription activity. Plant Biotechnology Journal, 22(2), 290–292. https://doi.org/10.1111/pbi.14214
Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y., & Wei, W. (2014). High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 509(7501), 487–491. https://doi.org/10.1038/nature13166
Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J., & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36(12), 1211–1216. https://doi.org/10.1038/nbt.4272







